尿微量白蛋白高是什么意思| 遣返是什么意思| 面试要准备什么东西| 下面流出发黄的液体是什么原因| 心慌吃什么药| 晟念什么字| 牡丹是什么植物| 天朝是什么意思| 月德合是什么意思| 头晕挂什么科比较好| 脑疝是什么原因引起的| 沙眼衣原体是什么意思| 什么是红斑狼疮病| 晚上睡觉喉咙干燥是什么原因| 九五至尊是什么生肖| 吃什么助勃药能硬| 学历证是什么| 柔肝是什么意思| 余事勿取是什么意思| ed病毒是什么| 着床成功后有什么症状或感觉| 喉咙发炎不能吃什么食物| 牛奶不能和什么一起吃| h1什么意思| 七月二十号是什么星座| 曾是什么意思| 什么地站着| 为什么会得阴道炎| 中国美食有什么| 黔驴技穷是什么意思| 额头上长痘痘什么原因| 牛和什么属相最配| 甜菜根在中国叫什么| 孕妇贫血吃什么补血最好| 家里出现蟑螂预示什么| 精神寄托是什么意思| 属牛的五行属性是什么| 梦到黄鳝是什么意思| 顺产和剖腹产有什么区别| 棉花是什么时候传入中国的| 冠心病需要做什么检查| g代表什么| 吃什么可以偷偷流产| 什么是飞秒手术| 九月二十四号是什么星座| 性早熟是什么意思| 09年是什么年| 米杏色是什么颜色| 宬字五行属什么| 7月初二是什么星座| 羊水破了什么感觉| 呔是什么意思| 吃什么能长头发| 早上6点到7点是什么时辰| 什么生肖不能养龟| 喝什么饮料解酒最快最有效| 口腔溃疡挂什么科就诊| 欠佳是什么意思| 攒劲是什么意思| 兔子是什么意思| 为什么会长粉刺| 回光返照是什么意思| 吃孕酮片有什么副作用| 二十三岁属什么生肖| 什么是还原糖| 对偶句是什么意思| 猪脚煲汤放什么材料好| 肝炎是什么病| 胆汁反流是什么原因| xswl是什么意思| 单男是什么意思| 猪冲蛇开什么生肖| 头顶冒汗是什么原因| 辣木籽有什么功效| 米杏色是什么颜色| 鱼死了有什么预兆| 全距是什么意思| 且行且珍惜什么意思| 牛拉稀用什么药最快| 风流人物指什么生肖| 空调的几匹是什么意思| 嘿咻是什么意思| 女人什么血型最聪明| 尿道口下裂是什么样子| 肾亏是什么原因造成的| 尿频吃什么药效果最好| 阔以是什么意思| 溺水是什么意思| 小孩脸肿是什么原因引起的| 一喝水就尿多是什么原因| 治疗湿疹吃什么药| 阴茎痒是什么原因| 油性皮肤适合用什么牌子的护肤品| 洗漱是什么意思| 什么的桃子| 拉稀屎是什么原因| 什么食物胶原蛋白含量高| 正团级是什么军衔| 摩羯男喜欢什么类型的女生| 什么是敏感肌| 世界上最长的河流是什么| 射手男和什么星座最配| 梦见上楼梯是什么意思| 中学校长是什么级别| 小孩办理护照需要什么材料| 护理是干什么的| 小孩发育迟缓是什么原因造成的| a是什么| 日月星辰下一句是什么| 筋膜炎是什么症状| 申字五行属什么| 脚底肿是什么原因引起的| 贝尔发明了什么东西| 一品诰命夫人是什么意思| 鸡蛋为什么这么便宜| 胎停会有什么症状| 脆豆腐是什么做的| 为什么叫马桶| 鲤鱼为什么很少人吃| 血小板体积偏低是什么原因| 喘不上气挂什么科| 国士无双什么意思| 吕布的坐骑是什么| 子宫增厚是什么原因| 胸口疼痛吃什么药| 2007年属什么生肖| 马拉松起源与什么有关| 叻叻猪是什么意思| 沙僧的武器叫什么名字| 左侧卵巢内无回声是什么意思| 众星捧月是什么意思| 三月三十号是什么星座| 心开窍于什么| 资金流入股价下跌为什么| 梦见毒蛇是什么预兆| 机能鞋是什么意思| 姨妈疼吃什么止疼药| 葡萄球菌用什么抗生素| 唏嘘什么意思| 驰字五行属什么| 五台山是什么菩萨的道场| 飞检是什么意思| 夏天吃什么| 龟龟是什么意思| 肢体拘挛是什么意思| 提手旁加茶念什么| 心理疾病吃什么药| 嘚是什么意思| 什么原因导致流鼻血| 20至30元什么烟最好抽| 女生私处长什么样| 七月份有什么节日| 张飞穿针的歇后语是什么| 喉部有异物感是什么病| 电视剧靠什么赚钱| 花儿为什么这样红简谱| 悱恻是什么意思| 新股配号数量是什么意思| 物业费都包括什么服务| 头汗特别多是什么原因| 甘薯和红薯有什么区别| 弱点是什么意思| 倒置是什么意思| 农历五月初五是什么星座| sars是什么意思| 白发是什么原因引起的| 同人文什么意思| 血糖高有什么反应| 冰火两重天是什么意思| 回门带什么礼物| 黄精有什么功效和作用| 肺有小结节要注意什么| 腹泻呕吐是什么原因| 梦见死人预示什么| 腱鞘炎有什么症状| 美国白宫是干什么的| 九月十三是什么星座| 阴囊湿疹用什么药膏| 小儿疳积是什么意思| 什么是钙化灶| 眼睛不舒服是什么原因引起的| o型血是什么血| 一个厂一个人念什么| 颈椎退行性变是什么意思| 菠萝蜜不能跟什么一起吃| 风湿性关节炎用什么药| 玉字五行属什么| 梦见巨蟒是什么预兆| 解语花是什么意思| 娃娃流鼻血是什么原因| 什么高什么长| 苦瓜和什么搭配最好| 为什么吃鸽子刀口长得快| 阿胶不能和什么一起吃| 淼怎么读什么意思| 失眠吃什么| 姑奶奶是什么意思| 无花果不能和什么一起吃| 肛门跳动是什么原因| 手术后放疗起什么作用| 查肝功能挂什么科| 福建有什么特产| 射手属于什么象星座| 开除是什么意思| 叻叻是什么意思| 打两个喷嚏代表什么| 鼻窦炎首选什么抗生素| 先自度其足的度是什么意思| 紫河车是什么东西| 中秋吃什么| 尿道炎症吃什么药好| kr是什么货币| 宝宝头大是什么原因| 什么是尿毒症啊| 官方旗舰店是什么意思| 生物钟什么意思| 右边小腹疼是什么原因女性| 迁移宫代表什么| 五音是什么意思| 百思不得其解什么意思| 尿葡萄糖阴性什么意思| 知进退明得失什么意思| 富三代是什么意思| 手指关节痛是什么原因| 心慌吃什么药| 小排畸是什么检查| 什么的月季| 为什么脚上会长鸡眼| suv什么意思| 阿苯达唑片是什么药| 化疗期间不能吃什么| 尾巴骨疼挂什么科| 内脏吃多了有什么危害| 口是心非什么意思| 学美容要学些什么| 喉咙干是什么病的前兆| 16588a是什么尺码女装| 总警司相当于大陆什么官| 痛经吃什么药好| 寓言故事有什么特点| 什么的钩住| 梦见移坟墓是什么预兆| 后背沉重感是什么原因引起的| 什么是援交| 梦见棉花是什么意思| 虚劳病是什么意思| 轻度郁症有什么表现| 晚上总是睡不着觉是什么原因| 阿q精神是什么意思| 公丁香和母丁香有什么区别| 梦到涨大水预示着什么| 什么能减肚子上的脂肪| 吃汉堡为什么要配可乐| 九死一生什么意思| 1967属什么生肖| 流产可以吃什么水果| 什么叫做亚健康| 肚子咕咕叫放屁多是什么原因| 36d什么意思| 接吻会传染什么病| 茯苓有什么作用和功效| 饽饽是什么意思| 眼角膜脱落什么症状| vampire是什么意思| 百度
百度 吴昊介绍,按照最新规定,在武汉生活工作的湖北省内居民,可直接在武汉办理出入境证件,无需再像以前一样提交居住证明或就学、就业证明;办理证件时限由原来的30天缩短为10个工作日,单独签注由15天缩短为7个工作日;湖北省内居民办理港澳台团队旅游签注时可使用自助签注机;同时,武汉市户籍居民的非湖北省户籍子女及父母也能在武汉办理往来港澳通行证及签注。

A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model (the probability distribution of different observations given the underlying state) and the underlying MDP. Unlike the policy function in MDP which maps the underlying states to the actions, POMDP's policy is a mapping from the history of observations (or belief states) to the actions.

The POMDP framework is general enough to model a variety of real-world sequential decision processes. Applications include robot navigation problems, machine maintenance, and planning under uncertainty in general. The general framework of Markov decision processes with imperfect information was described by Karl Johan ?str?m in 1965[1] in the case of a discrete state space, and it was further studied in the operations research community where the acronym POMDP was coined. It was later adapted for problems in artificial intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman.[2]

An exact solution to a POMDP yields the optimal action for each possible belief over the world states. The optimal action maximizes the expected reward (or minimizes the cost) of the agent over a possibly infinite horizon. The sequence of optimal actions is known as the optimal policy of the agent for interacting with its environment.

Definition

edit

Formal definition

edit

A discrete-time POMDP models the relationship between an agent and its environment. Formally, a POMDP is a 7-tuple  , where

  •   is a set of states,
  •   is a set of actions,
  •   is a set of conditional transition probabilities between states,
  •   is the reward function.
  •   is a set of observations,
  •   is a set of conditional observation probabilities, and
  •   is the discount factor.

At each time period, the environment is in some state  . The agent takes an action  , which causes the environment to transition to state   with probability  . At the same time, the agent receives an observation   which depends on the new state of the environment,  , and on the just taken action,  , with probability   (or sometimes   depending on the sensor model). Finally, the agent receives a reward   equal to  . Then the process repeats. The goal is for the agent to choose actions at each time step that maximize its expected future discounted reward:  , where   is the reward earned at time  . The discount factor   determines how much immediate rewards are favored over more distant rewards. When   the agent only cares about which action will yield the largest expected immediate reward; when   the agent cares about maximizing the expected sum of future rewards.

Discussion

edit

Because the agent does not directly observe the environment's state, the agent must make decisions under uncertainty of the true environment state. However, by interacting with the environment and receiving observations, the agent may update its belief in the true state by updating the probability distribution of the current state. A consequence of this property is that the optimal behavior may often include (information gathering) actions that are taken purely because they improve the agent's estimate of the current state, thereby allowing it to make better decisions in the future.

It is instructive to compare the above definition with the definition of a Markov decision process. An MDP does not include the observation set, because the agent always knows with certainty the environment's current state. Alternatively, an MDP can be reformulated as a POMDP by setting the observation set to be equal to the set of states and defining the observation conditional probabilities to deterministically select the observation that corresponds to the true state.

Belief update

edit

After having taken the action   and observing  , an agent needs to update its belief in the state the environment may (or not) be in. Since the state is Markovian (by assumption), maintaining a belief over the states solely requires knowledge of the previous belief state, the action taken, and the current observation. The operation is denoted  . Below we describe how this belief update is computed.

After reaching  , the agent observes   with probability  . Let   be a probability distribution over the state space  .   denotes the probability that the environment is in state  . Given  , then after taking action   and observing  ,

 

where   is a normalizing constant with  .

Belief MDP

edit

A Markovian belief state allows a POMDP to be formulated as a Markov decision process where every belief is a state. The resulting belief MDP will thus be defined on a continuous state space (even if the "originating" POMDP has a finite number of states: there are infinite belief states (in  ) because there are an infinite number of probability distributions over the states (of  )).[2]

Formally, the belief MDP is defined as a tuple   where

  •   is the set of belief states over the POMDP states,
  •   is the same finite set of action as for the original POMDP,
  •   is the belief state transition function,
  •   is the reward function on belief states,
  •   is the discount factor equal to the   in the original POMDP.

Of these,   and   need to be derived from the original POMDP.   is

 

where   is the value derived in the previous section and

 

The belief MDP reward function ( ) is the expected reward from the POMDP reward function over the belief state distribution:

 .

The belief MDP is not partially observable anymore, since at any given time the agent knows its belief, and by extension the state of the belief MDP.

Policy and value function

edit

Unlike the "originating" POMDP (where each action is available from only one state), in the corresponding Belief MDP all belief states allow all actions, since you (almost) always have some probability of believing you are in any (originating) state. As such,   specifies an action   for any belief  .

Here it is assumed the objective is to maximize the expected total discounted reward over an infinite horizon. When   defines a cost, the objective becomes the minimization of the expected cost.

The expected reward for policy   starting from belief   is defined as

 

where   is the discount factor. The optimal policy   is obtained by optimizing the long-term reward.

 

where   is the initial belief.

The optimal policy, denoted by  , yields the highest expected reward value for each belief state, compactly represented by the optimal value function  . This value function is solution to the Bellman optimality equation:

 

For finite-horizon POMDPs, the optimal value function is piecewise-linear and convex.[3] It can be represented as a finite set of vectors. In the infinite-horizon formulation, a finite vector set can approximate   arbitrarily closely, whose shape remains convex. Value iteration applies dynamic programming update to gradually improve on the value until convergence to an  -optimal value function, and preserves its piecewise linearity and convexity.[4] By improving the value, the policy is implicitly improved. Another dynamic programming technique called policy iteration explicitly represents and improves the policy instead.[5][6]

Approximate POMDP solutions

edit

In practice, POMDPs are often computationally intractable to solve exactly. This intractability is often due to the curse of dimensionality or the curse of history (the fact that optimal policies may depend on the entire history of actions and observations). To address these issues, computer scientists have developed various approximate POMDP solutions.[7] These solutions typically attempt to approximate the problem or solution with a limited number of parameters, plan only over a small part of the belief space online, or summarize the action-observation history compactly.

Grid-based algorithms[8] comprise one approximate solution technique. In this approach, the value function is computed for a set of points in the belief space, and interpolation is used to determine the optimal action to take for other belief states that are encountered which are not in the set of grid points. More recent work makes use of sampling techniques, generalization techniques and exploitation of problem structure, and has extended POMDP solving into large domains with millions of states.[9][10] For example, adaptive grids and point-based methods sample random reachable belief points to constrain the planning to relevant areas in the belief space.[11][12] Dimensionality reduction using PCA has also been explored.[13]

Online planning algorithms approach large POMDPs by constructing a new policy for the current belief each time a new observation is received. Such a policy only needs to consider future beliefs reachable from the current belief, which is often only a very small part of the full belief space. This family includes variants of Monte Carlo tree search[14] and heuristic search.[15] Similar to MDPs, it is possible to construct online algorithms that find arbitrarily near-optimal policies and have no direct computational complexity dependence on the size of the state and observation spaces.[16]

Another line of approximate solution techniques for solving POMDPs relies on using (a subset of) the history of previous observations, actions and rewards up to the current time step as a pseudo-state. Usual techniques for solving MDPs based on these pseudo-states can then be used (e.g. Q-learning). Ideally the pseudo-states should contain the most important information from the whole history (to reduce bias) while being as compressed as possible (to reduce overfitting).[17]

POMDP theory

edit

Planning in POMDP is undecidable in general. However, some settings have been identified to be decidable (see Table 2 in,[18] reproduced below). Different objectives have been considered. Büchi objectives are defined by Büchi automata. Reachability is an example of a Büchi condition (for instance, reaching a good state in which all robots are home). coBüchi objectives correspond to traces that do not satisfy a given Büchi condition (for instance, not reaching a bad state in which some robot died). Parity objectives are defined via parity games; they enable to define complex objectives such that reaching a good state every 10 timesteps. The objective can be satisfied:

  • almost-surely, that is the probability to satisfy the objective is 1;
  • positive, that is the probability to satisfy the objective is strictly greater than 0;
  • quantitative, that is the probability to satisfy the objective is greater than a given threshold.

We also consider the finite memory case in which the agent is a finite-state machine, and the general case in which the agent has an infinite memory.

Objectives Almost-sure (infinite memory) Almost-sure (finite memory) Positive (inf. mem.) Positive (finite mem.) Quantitative (inf. mem) Quantitative (finite mem.)
Büchi EXPTIME-complete EXPTIME-complete undecidable EXPTIME-complete[18] undecidable undecidable
coBüchi undecidable EXPTIME-complete[18] EXPTIME-complete EXPTIME-complete undecidable undecidable
parity undecidable EXPTIME-complete[18] undecidable EXPTIME-complete[18] undecidable undecidable

Applications

edit

POMDPs can be used to model many kinds of real-world problems. Notable applications include the use of a POMDP in management of patients with ischemic heart disease,[19] assistive technology for persons with dementia,[9][10] the conservation of the critically endangered and difficult to detect Sumatran tigers[20] and aircraft collision avoidance.[21]

One application is a teaching case, a crying baby problem, where a parent needs to sequentially decide whether to feed the baby based on the observation of whether the baby is crying or not, which is an imperfect representation of the actual baby's state of hunger.[22][23]

References

edit
  1. ^ ?str?m, K.J. (1965). "Optimal control of Markov processes with incomplete state information". Journal of Mathematical Analysis and Applications. 10: 174–205. doi:10.1016/0022-247X(65)90154-X.
  2. ^ a b Kaelbling, L.P., Littman, M.L., Cassandra, A.R. (1998). "Planning and acting in partially observable stochastic domains". Artificial Intelligence. 101 (1–2): 99–134. doi:10.1016/S0004-3702(98)00023-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Sondik, E.J. (1971). The optimal control of partially observable Markov processes (PhD thesis). Stanford University. Archived from the original on October 17, 2019.
  4. ^ Smallwood, R.D., Sondik, E.J. (1973). "The optimal control of partially observable Markov decision processes over a finite horizon". Operations Research. 21 (5): 1071–88. doi:10.1287/opre.21.5.1071.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Sondik, E.J. (1978). "The optimal control of partially observable Markov processes over the infinite horizon: discounted cost". Operations Research. 26 (2): 282–304. doi:10.1287/opre.26.2.282.
  6. ^ Hansen, E. (1998). "Solving POMDPs by searching in policy space". Proceedings of the Fourteenth International Conference on Uncertainty In Artificial Intelligence (UAI-98). arXiv:1301.7380.
  7. ^ Hauskrecht, M. (2000). "Value function approximations for partially observable Markov decision processes". Journal of Artificial Intelligence Research. 13: 33–94. arXiv:1106.0234. doi:10.1613/jair.678.
  8. ^ Lovejoy, W. (1991). "Computationally feasible bounds for partially observed Markov decision processes". Operations Research. 39: 162–175. doi:10.1287/opre.39.1.162.
  9. ^ a b Jesse Hoey; Axel von Bertoldi; Pascal Poupart; Alex Mihailidis (2007). "Assisting Persons with Dementia during Handwashing Using a Partially Observable Markov Decision Process". Proceedings of the International Conference on Computer Vision Systems. doi:10.2390/biecoll-icvs2007-89.
  10. ^ a b Jesse Hoey; Pascal Poupart; Axel von Bertoldi; Tammy Craig; Craig Boutilier; Alex Mihailidis. (2010). "Automated Handwashing Assistance For Persons With Dementia Using Video and a Partially Observable Markov Decision Process". Computer Vision and Image Understanding. 114 (5): 503–519. CiteSeerX 10.1.1.160.8351. doi:10.1016/j.cviu.2009.06.008.
  11. ^ Pineau, J., Gordon, G., Thrun, S. (August 2003). "Point-based value iteration: An anytime algorithm for POMDPs" (PDF). International Joint Conference on Artificial Intelligence (IJCAI). Acapulco, Mexico. pp. 1025–32.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  12. ^ Hauskrecht, M. (1997). "Incremental methods for computing bounds in partially observable Markov decision processes". Proceedings of the 14th National Conference on Artificial Intelligence (AAAI). Providence, RI. pp. 734–739. CiteSeerX 10.1.1.85.8303.
  13. ^ Roy, Nicholas; Gordon, Geoffrey (2003). "Exponential Family PCA for Belief Compression in POMDPs" (PDF). Advances in Neural Information Processing Systems.
  14. ^ David Silver and Joel Veness (2010). Monte-Carlo planning in large POMDPs. Advances in neural information processing systems.
  15. ^ Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee (2017). "DESPOT: Online POMDP Planning with Regularization". Journal of Artificial Intelligence Research. 58: 231–266. arXiv:1609.03250. doi:10.1613/jair.5328.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Michael H. Lim, Tyler J. Becker, Mykel J. Kochenderfer, Claire J. Tomlin, and Zachary N. Sunberg (2023). "Optimality Guarantees for Particle Belief Approximation of POMDPs". Journal of Artificial Intelligence Research. 77: 1591–1636. arXiv:2210.05015. doi:10.1613/jair.1.14525.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Francois-Lavet, V., Rabusseau, G., Pineau, J., Ernst, D., Fonteneau, R. (2019). On overfitting and asymptotic bias in batch reinforcement learning with partial observability. Journal of Artificial Intelligence Research. Vol. 65. pp. 1–30. arXiv:1709.07796.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  18. ^ a b c d e Chatterjee, Krishnendu; Chmelík, Martin; Tracol, Mathieu (2025-08-06). "What is decidable about partially observable Markov decision processes with ω-regular objectives". Journal of Computer and System Sciences. 82 (5): 878–911. doi:10.1016/j.jcss.2016.02.009. ISSN 0022-0000.
  19. ^ Hauskrecht, M., Fraser, H. (2000). "Planning treatment of ischemic heart disease with partially observable Markov decision processes". Artificial Intelligence in Medicine. 18 (3): 221–244. doi:10.1016/S0933-3657(99)00042-1. PMID 10675716.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Chadès, I., McDonald-Madden, E., McCarthy, M.A., Wintle, B., Linkie, M., Possingham, H.P. (16 September 2008). "When to stop managing or surveying cryptic threatened species". Proc. Natl. Acad. Sci. U.S.A. 105 (37): 13936–40. Bibcode:2008PNAS..10513936C. doi:10.1073/pnas.0805265105. PMC 2544557. PMID 18779594.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Kochenderfer, Mykel J. (2015). "Optimized Airborne Collision Avoidance". Decision Making Under Uncertainty. The MIT Press.
  22. ^ Kochenderfer, Mykel J.; Wheeler, Tim A.; Wray, Kyle H. (2022). Algorithms for decision making. Cambridge, Massachusetts; London, England: MIT Press. p. 678. ISBN 9780262047012.
  23. ^ Moss, Robert J. (Sep 24, 2021). "WATCH: POMDPs: Decision Making Under Uncertainty POMDPs.jl. Crying baby problem" (video). youtube.com. The Julia Programming Language.
edit
肠胃消化不好吃什么药 农历11月25日是什么星座 博士生导师是什么级别 心脏跳得快是什么原因 干扰素是治什么病的
85年是什么年 孕妇腿抽筋是什么原因 hpv52阳性是什么病 花甲是什么 心脏下边是什么器官
1994年属什么 大便是黑色是什么原因 vdr是什么意思 右肺下叶纤维化灶是什么意思 住院需要带什么
生肖龙和什么生肖最配 rsv是什么病毒 接盘侠什么意思 小孩子包皮挂什么科 性病都有什么
扁桃体割了对身体有什么影响hcv9jop3ns3r.cn 什么是血糖hcv8jop8ns8r.cn dep是什么意思hcv9jop8ns2r.cn 梦见鼻子出血是什么意思hcv9jop1ns0r.cn 血压低吃什么最快最有效hcv9jop5ns5r.cn
佳偶天成什么意思hebeidezhi.com 女生是党员有什么好处hcv7jop7ns4r.cn 容易出汗是什么问题hcv8jop2ns9r.cn 立是什么意思hcv9jop6ns5r.cn 唇炎吃什么药hcv8jop2ns1r.cn
长痔疮是什么引起的hcv9jop4ns0r.cn 莞字五行属什么hcv9jop2ns6r.cn 秋葵不能和什么一起吃bfb118.com 真情流露是什么意思hcv8jop3ns8r.cn 麦冬长什么样hcv9jop3ns0r.cn
壬午日五行属什么hcv9jop5ns9r.cn 手掌麻是什么原因引起的hcv9jop5ns9r.cn 胸闷气短挂什么科hcv7jop7ns1r.cn 螨虫长什么样子zhiyanzhang.com 眼睛散光和近视有什么区别hcv8jop7ns0r.cn
百度